
2, The r o t a t i o n a l  energy of  beam e l e c t r o n s  i n c r e a s e s  wi th  i n c r e a s i n g  c u r r e n t ,  and may 
reach  an a p p r e c i a b l e  f r a c t i o n  of  the  t o t a l  energy .  The r o t a t i o n a l  energy d e c r e a s e s  wi th  an 
increhse in the magnetic field, and approaches zero in the limit of an infinitely large field. 

3. State diagrams relating the energy characteristics of the beam, the current, and 
the geometrical parameters enable one to distinguish three regions differing in the initial 
state, The transition from one region to another for an adiabatically slow variation of the 
magnetic field enables one to produce different transformations of the energy of the system, 
ensuring an adiabatic acceleration and deceleration, and also an appreciable compression of 
the beam within the framework of the model considered. 

The authors thank A. V. Zharlnov for posing the problem and for a discussion of the 
paper. 
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NUMERICAL CALCULATIONS OF STATIONARY STATES OF MAGNETIC 

SELF-INSULATION OF VACUUM LINES 

G. G. Golovin, A. V. Gordeev 
B. D. Korolev, V. P. Smirnov, 
and A. S. Chernenko 

UDC 533.916 : 517.949.8 

Magnetic self-insulation of vacuum gaps permits attaining electric fields of > 104 
V/cm due to screening of the negative electrode by a layer of magnetized electrons [i]. As 
a result, it is possible to transmit energy fluxes along vacuum lines and to concentrate 
them to densities > 10 *2 W/cm 2, which finds application, in particular, in large-scale sys- 
tems, for example, Angara-5 [2]. In spite of the broad practical application of self-lnsu- 
lation, there is as yet no complete theory of the equilibrium of electron layers. The best 
developed models are the hydrodynamic Brillouin model and the kinetic model with one type 
of trajectory. The hydrodynamic model, which does not tale into account the pressure in 
the electron layer (Brillouin flow), describes well cylindrical lines. The more realistic 
kinetic model, which takes into account one type of electron trajectory, predicts the exis- 
tence of equilibrium configurations only for flat and cylindrical lines and, in addition, 
in the latter, the external electrode must be negative [3]. The important case of converg- 
ing conical lines, which is important for concentrating energy flux, is described only ap- 
proximately by the hydrodynamic model. In the self-consistent kinetic as well as in the 
single-frequency approximations, there are no solutions, which is a result of the dependence 
of the azimuthal magnetic field on the distance to the apex of the cone [4]. Great diffi- 
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culties likewise arise in attempts to describe analytically the coupling between the line 
and the diode at the end of the line. This problem is a particular case of the problem of 
inhomogeneous lines, for which approximate computational methods are only now being formu- 
lated. As an example, we point to the adiabatic model of the high-current diode [5]. The 
present situation urgently requires the development of numerical methods for calculating 
lines with different configurations. At the present time, calculations based on the stabili- 
zation method using macroparticles are used for such problems. However, direct application 
of the stabilization method to calculation of a line leads to large fluctuations, which 
greatly reduce accuracy, overload computer memory, and increase computational time. A new 
stationary numerical algorithm described in this paper eliminates the fluctuations and works 
practically with any electrode. Results of numerical calculations of lines with magnetic 
insulation are presented here for two configurations (cylindrical and conical) and are com- 
pared with experiment. 

The most general geometry of a vacuum coaxial line is shown in Fig. i. The inner cylin- 
der with radius R, is the cathode and the outer cylinder with radius R2 is the anode. The 
sharp edge of the cathode at the end of the coaxial line is rounded and the rounding radius 
Ro is approximately 1% of R,. We shall denote the magnitude of the accelerating gap at the 
outlet of the coaxial line by d. For large values of the potential difference U applied to 
the electrodes, explosive electron emission arises on part of the cathode S (in Fig. i, it 
is shown by a dashed line) [6]. The explosive emission results in a vanishing normal com- 
ponent of the electric field intensity E n on the surface S for steady-state electron motion: 
E n = 0. This condition serves to determine the emission current density Je on S. 

The stationary motion of the relativistic electron plasma in the vacuum coaxial line 
can be described with the help of the system of Maxwell's equations and Vlasov's equation: 

d iv  E = 4 a p  = - -  4~te~ ld3p, (1) 

4~ . " 4~ l* r o t H = ~ ]  : - - ~ e  v/dSp, 
J C C 

d i v H = O ,  r o t E = O ,  

( 7" ' {"I '1)5 '  0 (vv)  / - -  e \ E  + 

with fixed boundary conditions. In the system (i), E and H are the intensities of the elec- 
tric and magnetic fields; p and j are the charge and current densities; f is the electron 
distribution function; --e and m are the charge and mass of the electron; c is the velocity 
of light; the momentum p and the velocity v of the electrons are related by the relation 

v =  W 1 +  m~dj . 

In view of the difficulty of integrating Vlasov's kinetic equation, in practice, the 
equations of motion of separate particles are usually integrated: 

- ~ / - = v ,  ~ / - = - - e  E + T [ v H ] ,  

which are characteristics of the kinetic equation. In this case, the system of equations 
(I) in cylindrical coordinates r, 8, and z has the form presented in [7]. 

i. Stationary Maxwell's equations 

633 



I 0 Oq~ 
7~r~---- -- 4~p; (2) 

t 8 4~ OHe 4~ 
, 7"~7(rHo)=T],, -- ~,.' =Tit (3) 

with boundary conditions for the potential ~ and the component of the magnetic field inten- 
sity H e 

~ I = O, 
P 

q~ ~=o _ % U ----~, go [~ffio = 0. 

R 1 

(4) 

2. Equation of motion of the electrons 

-.~ = - 1 "7" E, + 7 v, (v ,g ,  + v , g~ ) ,  

Ovr e 1 / / "  v 2 . 

dr dz O~ Ez  = @~ 
d--~ = v~, - ~  = vz, E~ = Or ' - -  o-'~" 

(5) 

with initial conditions 

r(s, O) = r~ z(s, O) = z~ 
v~(s, 0) = v~ cos  ( e .  n(s)), v~(s, 0) _ r (s) Gos (e, ,  n(s)), 

where v ~ r ~ z ~ are constants that are given in the formulation of a specific problem; n(s) 
is the direction of the normal in the D region to the cathode at the point of the cathode; 
s, er, and e_~ are the unit vectors of the coordinate axes; v 2 = Vr2 + Vz; and s is the co- 
ordinate along the surface S. 

3. The relations for determining the functions O and j at any point M in the region 
D are as follows: 

~'(rM) 
e E l'h e.~ (V~O 

p ( M ) =  VM , ] ( M ) =  r=IVM = 9 ( M ) v ( M ) ,  (6) 

where V M is a volume of fixed size and shape surrounding the point M; N(V M) is the number 
of electrons in this volume; and v k is the velocity of the electrons. 

The number of equations of motion (5) in the system written out is very large and coin- 
cides with the number of electrons located in the gap between the electrodes. It is impos- 
sible to integrate such a system in practice. However, if large groups of electrons with 
close trajectories of motion are combined into macroparticles, then the number of equations 
of motion (5) in the system (2)-(6) is considerably reduced, which makes the problem of its 
numerical integration realistic. 

We note that in using the method of macroparticles, the system (2)-(6) does not change. 
Only the method of counting the number of electrons N(V M) in the volume V M in expression (6) 
changes; this method is related with one or another method for "smearing"-the macroparticles 
[8]. 

To describe the motion of electrons in a vacuum coaxial line with the help of the system 
of equations (2)-(6), it is necessary to know their initial velocities, the magnitude of the 
electron flux from the cathode in the region D (the emission current density je ), and the 
region of emission S. We shall assume that in the physical problem formulated above, the 
initial velocity v ~ of the electrons is identical for all points on the cathode, is oriented 
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perpendicular to the cathode surface, and is of the order of v ~ = 107 cm/sec [6]. 

To determine the emission current density Je' the condition on the normal component of 
the electric field intensity at the cathode is used: 

E~Is =0, (7) 

which is a result of the infinite emissivity of the cathode. In this paper, we shall assume 
that the emission zone S consists of the part of the cathode surface where the normal com- 
ponent of the electric field intensity in the absence of volume charge exceeds a critical 
magnitude E,(E,~_-150--200 kV/cm), for which explosive emission appears [6]. To determine this 
emission zone, it is necessary to find the solution of Laplace's equation in the absence of 
emission with boundary conditions [4]. 

Some sections of the emission zone S can be screened by the electron flux arriving from 
other parts of the zone (see Fig. I, sections $I and $2). For this case, it was necessary 
to use a more general condition 

E~] s >~ O, (8) 

which permits screening of any parts of the cathode. 

We note that the system (2)-(7) permits determining the self-consistent electromagnetic 
fields E and H, the motion of charged particles in them, and the emission current density Je 
at the cathode. 

We shall brieflylist the basic details of the numerical algorithm used in this work 
(the algorithms are described in greater detail in [7, 9]). 

i. Poisson's (2) or Laplace's equation with zero boundary conditions or with conditions 
(4) is solved by the difference method. For this, a considerably nonuniform spatial grid 
is induced in region D (see Fig. i): The steps near the cathode (along the normal to its 
surface), near the cathode corner (along its surface), andnear the edge of the emission 
zone (along the cathode surface) are i03-i0 ~ times smaller than the maximum step in the grid 
in region D. The algebraic system of equations obtained when the Laplaclan operator is re- 
placed by its difference analog is solved by the method of matrix factorlzation. 

2. The quantities E r and Ez are determined from the formulas for numerical differentia- 
tion of two successive equations in group 65). To determine the quantity E n at the cathode, 
the values of the potential on three nodes of the grid near the boundaries, one of which is 
a boundary node, are used. 

3. To determine H e in the accelerating gap, the first of equations (3) is used and 
the second equation in (3) is used to determine H e in the gap between the cylindrical sur- 
faces. 

4. The equations of motion (5) are integrated with the help of Euler's method with one 
correction [7]. 

5. To calculate the quantities N(V M) in Eqs. (6), the point-smearing method is used [8]. 

6. The method of test charges, proposed in [7], is used to determine the quantities 
Je from conditions (7) or (8). 

7. The system of equations (2)-(8) is integrated by the method of iteration [7, 9]. 
The distinguishing feature of the iterative method used is satisfaction of the condition 
(7) at each step, which guarantees rapid convergence of the method, 

Five improperly posed partial problems were discovered in this work: the problems for 
determining the current density and the charge density inside the region; the problem of 
determining 3e at the cathode from condition (7) [i0]; the stationary motion relative to 
small perturbances of the electric and magnetic fields is unstable [ii]. Each of the dif- 
ficulties indicated requires its own method of regulation. Condition (7) is an effective 
regulator of the basic electrical instability. In the problem being examined, there is a 
power-law singularity of the right side of Poisson's equation (2). The use of a nonuniform 
grid considerably increases the accuracy of the solutions near the singularity and eliminates 
their "agitation" [10-12]. 

For short segments of the lines, the magnitude of the total current turned out to be 
proportional to the length of the emitting surface, which agrees with the results in [13]. 
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When the length of the llne L increases, due to screening of the emitting surface, this pro- 
portionality breaks down and the total current in the line I~ no longer depends in the length. 
This current coincides with the self-insulation current of the line, at which the leakage 
currents on the outer electrode vanish. For a llne with the radii of the outer R2 and in- 
ner R, electrodes forming the ratio R2/R, = 2.7 cm/l.l cm and with negative voltage on the 
cathode U = 400 kV, the current I Z remained practically unchanged with increasing emission 
zone, beginning with L > i0 cm. 

Figure 2 shows the trajectories of electrons in the case of the steady-state insulation 
regime. When the voltage on the line U = 410 kV and while the accelerating gap d = 2 cm 
(Fig. 2a), the computed total current of the line equals 17.8 kA. For a voltage of U = 
390 kV on the line and the gap d = 0.6 cm (Fig. 2b), the current equals 18.8 kA. As is 
evident from Fig. 2a, the motion of particles far from the end face of the line occurs in 
the form of an electron layer, pressed to the inner electrode. The height of this layer 
exceeds the height obtained from the hydrodynamic approximation [i], which could be related 
with the initial spread in the velocities of the particles. Thus, according to the hydro- 
dynamic theory, for the curren; and voltage indicated, the height Of the layer equals 0.7 cm 
(the dashed straight line in Fig. 2a), while computed height is 1.0 cm. 

Figure 3 shows the trajectories of electrons as a function of the magnitude of the ap- 
plied voltage for constant accelerating gap d = 0.2 cm (R2/R, = 2.7 cm/l.l cm). In Fig. 3a- 
c, the voltage and current of the line equal, respectively, 100 kV and i0 kA, 200 kV and 27 
kA, and 400 kV and 76 kA. As is evident from Fig. 3, an increase in voltage leads to nar- 
rowing of the effective emission zone on the surface of the negative electrode, participat- 
ing in the creation of the current in the line, and to a decrease in the height of the layer. 

Experiments were performed on the MS accelerator (U = 350 kV, I = 35 kA, ~ = 40 nsec) 
[i, 14]. 

The computed magnitudes of the total current in the line I Z and the current la, reaching 
the end anode, are compared with the experimental values as a function of the accelerating 
gap d in Fig. 4. The dark points are the experimental values and the open circles corre- 
spond to the maximum values of IZ and I a. It follows from the experiment and from the com- 
putational results that for d~. 0.6 cm, the current in the llne is completely switched at 
the end anode (see also Fig. 2b). As the gap increases (d �9 0.6 cm), part of the electron 
flux reaches the outer electrode of the llne. For d �9 i cm, the experimetnal and computed 
values of the total current in the llne approached their limiting value, which coincides to 
within 10% with the theoretical minimum current Imi n, required to establish the insulation 
state [i]. In this case, practically the entire current (I l = 17.5 kA) is short-circuited 
through the outer electrode at the end of the line (14 kA) in the region 13~z~_17 cm. 
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It should be noted that for small accelerating gaps (d ~ 0.4 cm), the experimental and com- 
puted dependences of I~ and I a disagreed. This is apparently related with the decrease in 
the effective gap d as a result of the motion of the near-electrode layers of the plasma. 
The disagreement was eliminated by assuming that the velocity of the motion of the plasma 
equals (1.5--2)-106 cm/sec. A limiting measured current equal to 17.5 kA is attained in 
calculations with an emission length S >~i0 cm. For L = 17 cm and d = 2 cm, a current equal 
to 1.8 kA flows from the end cathode (0<~_r~-~l.09 cm) to the anode; a current of 0.66 kA 
flows from the rounded part of the cathode (Ro = 0.01 cm); and, a current of 15.8 kA flows 
from the cylindrical surface. In addition, a current of 8.2 kA flows from the surface ad- 
jacent to the end cathode (i0~< z~15 cm) and a current of 7.6 kA flows from the remaining 
surface (z~10 cm). We note that as the calculations show, beginning with some value Ro, 
the total current is nearly independent of the decrease in the rounding radius of the cathode. 
It follows from the calculation that the maximum values of the leakage current, as well as 
of the current density, occur on the region of the surface of the outer electrode (14~.z 
16 cm) and are localized near the end surface of the cathode in the line (see Fig. 2b). 
This effect was observed experimentally [15]. 

Figure 5, which shows the lines indicating the level of the four functions o, Jz' HS, 
and Er/U (the dependences are given in cgs units), illustrate the distribution of charge 
p, axial current density 3z, and the magnetic H 8 and electric E z fields in the vacuum line. 

Together with the coaxial vacuum lines, calculations were performed for conical uniform 
lines with the cone angle of the cathode varying from 5 to 37.5 ~ and the angular gap between 
the electrodes varying from 3 to 12.5 ~ The length of the lines varied from 3 to 25 cm, 
while the ratios of the input and output radii of the electrodes constituted R=o/R,o = 5.0 
cm/3.3 cm and R=/R, = 1.5 cm/l.0 cm, respectively. Figure 2c shows the results of the nu- 
merical calculation of electron trajectories, corresponding to the stationary flow, with a 
voltage of 160 kV on the line for an accelerating gap of 0.3 cm. As in the case of cylin- 
drical lines, a gap d = 0.2 cm existed for which the entire current was switched at the end 
anode; in addition, in the experiments, this switching was observed with somewhat larger 
gaps (d = 0.3 cm) than suggested by calculations. 

Figure 6 shows the dependence of the limiting current in the conical line with constant 
voltage as a function of the cone angle (open circles show the experimental values and 
filled circles show the computed values), It is evident that as the cone angle of the llne 
increases, the values of the limiting current decrease compared with the minimum values. 
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The measured limiting current, as the computational and experimental results show, depends 
on the cone angle of the line. This cannot be explained in an analytic equilibrium model 
within the framework of the Brillouin approximation. 

In this work, an effective numerical method for calculating vacuum high-voltage systems 
in the absence of an external magnetic field along the direction of propagation of the cur- 
rent has been created for the first time in computational practice in this country. It is 
well known that the presence of a high longitudinal magnetic current leads to stabilization 
of fluctuations and facilitates the calculations [16]. 

With the help of the procedure described above, calculations of a number of variants 
of cylindrlcal and conical vacuum lines were performed. As a result of these calculations, 
the structure of electron flows in lines was investigated in detail, and the trajectories of 
charged particles as well as the distribution of the fields and of the current density both 
in the vacuum region and at the boundaries of the electrodes were obtained. The computed 
integral characteristics of the beams agree well with the results of physical experiments. 
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